
Seminary 5  
Gravitation 

UNIVERSAL ATTRACTION LAW  

Inverse-square law. Which is the physical origin of the inverse square law (e.g. gravitational, 
electrostatic force)?  

Answer: The inverse-square law in Physics 2
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, is any physical law stating that a specified 

physical quantity or intensity is inversely proportional to the square of the distance from the 
source of that physical quantity. The fundamental cause for this can be understood as geometric 
dilution corresponding to point-source radiation into three-dimensional space. 

 

The inverse-square law generally applies when some force, energy, or other conserved quantity 
is evenly radiated outward from a point source in three-dimensional space. Since the surface 
area of a sphere (which is 4πr2  is proportional to the square of the radius, as the emitted 
radiation gets farther from the source, it is spread out over an area that is increasing in 
proportion to the square of the distance from the source. Hence, the intensity of radiation 
passing through any unit area (directly facing the point source) is inversely proportional to the 
square of the distance from the point source. Gauss' law is similarly applicable, and can be 
used with any physical quantity that acts in accord to the inverse-square relationship.  

For a radiating source intensity  1/distance2 . 

 

Gravitation is the attraction of two objects with mass. Newton's law states: The gravitational 
attraction force between two-point masses is directly proportional to the product of their 



masses and inversely proportional to the square of their separation distance. The force is 
always attractive and acts along the line joining them.  If the distribution of matter in each 
body is spherically symmetric, then the objects can be treated as point masses (good 
approximation if the separation between the massive bodies is much larger compared to their 
size). 

Electrostatics The force of attraction or repulsion between two electrically charged particles, in 
addition to being directly proportional to the product of the electric charges, is inversely 
proportional to the square of the distance between them; this is known as Coulomb's law. 

Waves, Light and other electromagnetic radiation 

The intensity of light or other linear waves radiating from a point source (energy per unit of 
area perpendicular to the source) is inversely proportional to the square of the distance from 
the source; so an object (of the same size) twice as far away, receives only one-quarter the 
energy (in the same time period). 

Gravity train 

A gravity train would be a hypothetical means of transportation intended to go between two 
points on the surface of the Earth, following a straight tunnel that goes directly from one point 
to the other through the center of the Earth.  Demonstrate that this train (mass m) could be left to 
accelerate using just the force of gravity, since, during the first half of the trip (from the point of 
departure until the middle), the downward pull towards the center of gravity would pull it 
towards the destination. During the second half of the trip, the acceleration would be in the 
opposite direction relative to the trajectory, but (ignoring the effects of friction) the speed 
acquired before would be enough to cancel this deceleration exactly (so that the train would 
reach its destination with speed equal to zero). 

Answer: 

 

 

In a first step we calculate the variation of g 
with the distance r with respect to the surface 
of the Earth of radius RE, in two situations: 

(a) r < RE (object of mass m outside of the 
Earth). 

(b)  r > RE (object of mass m inside of the 
Earth). 

 



 

 

 



 

Restoring force => oscillation 

 

Motion of satellites 

The satellites have a constant circular motion describing circular orbital movement around the 
Earth. The radius of the circular satellite orbit r is measured from the center of the Earth. Given 
the mass of the earth ME and the universal attraction constant G. 

a) Illustrate how, by increasing the initial speed an object launched from the surface of the 
Earth, one can change its trajectory from parabola to close circular orbit then open orbit. 

b) Using Newton’s universal law of gravitation and the definition of the centripetal force 
calculate the velocity of the satellite on a closed circular path of radius r and show that 
this does not depend on the satellite mass. 

c) A 1000 kg satellite describes a circular orbit at 300km above the surface of the Earth 
(RE=6380km). Calculate its speed, period and radial acceleration. 

Answer: 



 

Trajectories of a 
projectile launched 
from a great height 
(ignoring air 
resistance). Orbits 1 
and 2 would be 
completed as shown 
if the earth were a 
point mass at C. 
(This illustration is 
based on one in 
Isaac Newton’s 
Principia.) 

a) We launch a projectile from point A in the direction AB, tangent to the earth’s surface. 
Trajectories 1 through 7 show the effect of increasing the initial speed. In trajectories 3 through 
5 the projectile misses the earth and becomes a satellite. If there is no retarding force, the 
projectile’s speed when it returns to point A is the same as its initial speed and it repeats its 
motion indefinitely. 

Trajectories 1 through 5 close on themselves and are called closed orbits. All closed orbits are 
ellipses or segments of ellipses; trajectory 4 is a circle, a special case of an ellipse. Trajectories 
6 and 7 are open orbits. For these paths the projectile never returns to its starting point but 
travels ever farther away from the earth. 

b) satellite speed in a circular closed path motion 

 



 

 

c) 

 



 

GRAVITATIONAL POTENTIAL ENERGY 

An object of mass m is situated at a distance r with respect to the center of the Earth of mass 
ME. a) a) Using the universal attraction law and the relation between force and potential energy 
calculate the potential energy of the mass m in the gravitational field.  

b) Show that when we are close to the surface of the Earth the above result reduces to the 
familiar U=mgy. 

c) Using total energy conservation, calculate a minimum speed of a projectile launched 
vertically from the surface of the Earth to reach an altitude equal to the Earth radius RE.   

d) Based on same energy conservation, calculate the minimum projectile speed that allows to 
escape the Earth completely (and go to infinity). Discuss the results as a function of the mass of 
the planet. 

Answer: 

a) Gravitational potential energy 

 



 

 

A graph of the gravitational potential 
energy U for the system of the earth 
(mass and an astronaut (mass m) 
versus the astronaut’s distance r from 
the center of the earth. 

 

b) Close to the surface of the Earth.  From:  



 

We consider a body of mass m outside the earth, and first compute the work done by the 
gravitational force when the body moves directly away from or toward the center of the earth 
from r1 to r2 as in Fig. 

 

=>  

<=> 

 

If the body stays close to the earth, then in the denominator we may replace r1 and r2 and by 
the earth’s radius RE, so: 

 

But:  

 

If we replace the r’s by y’s, we get the expression for the work done by a constant gravitational 
force. Wgrav =mg(y1-y2) see course. 

 U = mgy , that would be a particular case of  

 

for the case when we are very close to the surface of the Earth. 



 

c) Projectile vertically launched to get altitude equal to RE: 

 

 

 

d) Escape velocity 

28400 km/h 



 

 

 

Discussion, Generalization: 

 

40200km/h 



 

 

 

Black Holes, the Schwarzschild radius, and the Event Horizon 

 

The concept of a black hole is one of the most interesting and startling products of modern 
gravitational theory, yet the basic idea can be understood on the basis of Newtonian principles. 

In the previous problem we have calculated the escape speed from a star of mass M and radius 
R. 

a) Rewrite the escape speed in terms of an average density  and planet/star radius R. 
Calculate the escape velocity from the surface of the Sun (M=1.99* 1030kg, 
R=6.96*108m). What fraction represents this with respect to the speed of the light in 
vacuum (c=3*109m/s)? 

b) The first expression for escape speed 
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mass M will act as a black hole if its radius R is less than or equal to a certain critical 
radius, called the Schwarzschild radius.  From the condition v=c (speed of light) 
determine this critical radius.  

c) Which would be the Schwarzschild radius for the Sun and of the Earth within all their 
mass shoud be compressed in order to behave as a black hole?  

  



Answer: 

a) 

 

For the Sun: 

 =>      

  

This represents 1/500 from the speed of light, is independent of the mass of the escaping body; it 
depends on only the mass and radius (or average density and radius) of the sun. 

Consider various stars with the same average density and different radii R. the equation giving 
the escape speed shows that for a given value of density the escape speed is directly 
proportional to R. In 1783 the Rev. John Mitchell, an amateur astronomer, noted that if a body 
with the same average density as the sun had about 500 times the radius of the sun, its escape 
speed would be greater than the speed of light c. With his statement that “all light emitted from 
such a body would be made to return toward it,” Mitchell became the first person to suggest the 
existence of what we now call a black hole—an object that exerts a gravitational force on other 
bodies but cannot emit any light of its own. 

b) 

 



 

So, from: 

 

Discussion If a spherical, nonrotating body with mass M has a radius less than then nothing 
(not even light) can escape from the surface of the body, and the body is a black hole (Fig.). 
In this case, any other body within the center of the black hole is trapped by the 
gravitational attraction of the black hole and cannot escape from it. 

 



 
The surface of the sphere with radius surrounding a black hole is called the event horizon: 
Since light can’t escape from within that sphere, we can’t see events occurring inside. All 
that an observer outside the event horizon can know about a black hole is its mass (from its 
gravitational effects on other bodies), its electric charge (from the electric forces it exerts on 
other charged bodies), and its angular momentum (because a rotating black hole tends to 
drag space—and everything in that space—around with it). All other information about the 
body is irretrievably lost when it collapses inside its event horizon. 

Observation of black holes 

At points far from a black hole, its gravitational effects are the same as those of any normal 
body with the same mass. If the sun collapsed to form a black hole, the orbits of the planets 
would be unaffected. But things get dramatically different close to the black hole. If you 
decided to become a martyr for science and jump into a black hole, the friends you left 
behind would notice several odd effects as you moved toward the event horizon, most of 
them associated with effects of general relativity. 

If you carried a radio transmitter to send back your comments on what was happening, your 
friends would have to retune their receiver continuously to lower and lower frequencies, an 
effect called the gravitational red shift. Consistent with this shift, they would observe that 
your clocks (electronic or biological) would appear to run more and more slowly, an effect 
called time dilation. In fact, during their lifetimes they would never see you make it to the 
event horizon. 

In your frame of reference, you would make it to the event horizon in a rather short time but 
in a rather disquieting way. As you fell feet first into the black hole, the gravitational pull on 
your feet would be greater than that on your head, which would be slightly farther away 
from the black hole. The differences in gravitational force on different parts of your body 
would be great enough to stretch you along the direction toward the black hole and 



compress you perpendicular to it. These effects (called tidal forces) would rip you to atoms, 
and then rip your atoms apart, before you reached the event horizon. 

Observation 

All that an observer outside the event horizon can know about a black hole is: 

- its mass (from the gravitational effect on other bodies). 
- its electric charge (from electric forces that it exerts on other charged bodies). 
- Its angular momentum (because a rotating black hole tends to drag space and 

everything in that space around it). 

All the other (direct) information about the black-hole (body with radius smaller than the 
Schwarzschild radius) is irretrievably lost when it collapses inside the event horizon.   
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